1,498 research outputs found

    Technology utilization in a non-urban region - The first four years of an experiment Final report

    Get PDF
    Technology utilization by small industrial plant

    Time-division SQUID multiplexers with reduced sensitivity to external magnetic fields

    Full text link
    Time-division SQUID multiplexers are used in many applications that require exquisite control of systematic error. One potential source of systematic error is the pickup of external magnetic fields in the multiplexer. We present measurements of the field sensitivity figure of merit, effective area, for both the first stage and second stage SQUID amplifiers in three NIST SQUID multiplexer designs. These designs include a new variety with improved gradiometry that significantly reduces the effective area of both the first and second stage SQUID amplifiers.Comment: 4 pages, 7 figures. Submitted for publication in the IEEE Transactions on Applied Superconductivity, August 201

    Accurate evolutions of unequal-mass neutron-star binaries: properties of the torus and short GRB engines

    Get PDF
    We present new results from accurate and fully general-relativistic simulations of the coalescence of unmagnetized binary neutron stars with various mass ratios. The evolution of the stars is followed through the inspiral phase, the merger and prompt collapse to a black hole, up until the appearance of a thick accretion disk, which is studied as it enters and remains in a regime of quasi-steady accretion. Although a simple ideal-fluid equation of state with \Gamma=2 is used, this work presents a systematic study within a fully general relativistic framework of the properties of the resulting black-hole--torus system produced by the merger of unequal-mass binaries. More specifically, we show that: (1) The mass of the torus increases considerably with the mass asymmetry and equal-mass binaries do not produce significant tori if they have a total baryonic mass M_tot >~ 3.7 M_sun; (2) Tori with masses M_tor ~ 0.2 M_sun are measured for binaries with M_tot ~ 3.4 M_sun and mass ratios q ~ 0.75-0.85; (3) The mass of the torus can be estimated by the simple expression M_tor(q, M_tot) = [c_1 (1-q) + c_2](M_max-M_tot), involving the maximum mass for the binaries and coefficients constrained from the simulations, and suggesting that the tori can have masses as large as M_tor ~ 0.35 M_sun for M_tot ~ 2.8 M_sun and q ~ 0.75-0.85; (4) Using a novel technique to analyze the evolution of the tori we find no evidence for the onset of non-axisymmetric instabilities and that very little, if any, of their mass is unbound; (5) Finally, for all the binaries considered we compute the complete gravitational waveforms and the recoils imparted to the black holes, discussing the prospects of detection of these sources for a number of present and future detectors.Comment: 35 pages; small changes to match the published versio

    Thermodynamic properties of excess-oxygen-doped La2CuO4.11 near a simultaneous transition to superconductivity and long-range magnetic order

    Full text link
    We have measured the specific heat and magnetization {\it versus} temperature in a single crystal sample of superconducting La2_{2}CuO4.11_{4.11} and in a sample of the same material after removing the excess oxygen, in magnetic fields up to 15 T. Using the deoxygenated sample to subtract the phonon contribution, we find a broad peak in the specific heat, centered at 50 K. This excess specific heat is attributed to fluctuations of the Cu spins possibly enhanced by an interplay with the charge degrees of freedom, and appears to be independent of magnetic field, up to 15 T. Near the superconducting transition TcT_{c}(HH=0)= 43 K, we find a sharp feature that is strongly suppressed when the magnetic field is applied parallel to the crystallographic c-axis. A model for 3D vortex fluctuations is used to scale magnetization measured at several magnetic fields. When the magnetic field is applied perpendicular to the c-axis, the only observed effect is a slight shift in the superconducting transition temperature.Comment: 8 pages, 8 figure

    AMR, stability and higher accuracy

    Full text link
    Efforts to achieve better accuracy in numerical relativity have so far focused either on implementing second order accurate adaptive mesh refinement or on defining higher order accurate differences and update schemes. Here, we argue for the combination, that is a higher order accurate adaptive scheme. This combines the power that adaptive gridding techniques provide to resolve fine scales (in addition to a more efficient use of resources) together with the higher accuracy furnished by higher order schemes when the solution is adequately resolved. To define a convenient higher order adaptive mesh refinement scheme, we discuss a few different modifications of the standard, second order accurate approach of Berger and Oliger. Applying each of these methods to a simple model problem, we find these options have unstable modes. However, a novel approach to dealing with the grid boundaries introduced by the adaptivity appears stable and quite promising for the use of high order operators within an adaptive framework
    corecore